Capillary Microfluidics-Assembled Virus-like Particle Bionanoreceptor Interfaces for Label-Free Biosensing.
نویسندگان
چکیده
A capillary microfluidics-integrated sensor system is developed for rapid assembly of bionanoreceptor interfaces on-chip and label-free biosensing. Genetically engineered Tobacco mosaic virus (TMV) virus-like particles (VLPs), displaying thousands copies of identical receptor peptides FLAG-tags, are utilized as nanoceptors for antibody sensing. Controlled and accelerated assembly of VLP receptor layer on impedance sensor has been achieved using capillary action and surface evaporation from an open-channel capillary microfluidic system. VLPs create a dense and localized receptor monolayer on the impedance sensor using only 5 μL of VLP sample solution (0.2 mg/mL) in only 6 min at room temperature. The VLP-functionalized impedance sensor is capable of label-free detection of target antibodies down to 55 pM concentration within 5 min. These results highlight the significant potentials of an integrated microsystem for rapid and controlled receptor-transducer interface creation and the nanoscale VLP-based sensors for fast, accurate, and decentralized pathogen detection.
منابع مشابه
Real-Time Capture and Visualization of Individual Viruses in Complex Media.
Label-free imaging of individual viruses and nanoparticles directly in complex solutions is important for virology research and biosensing applications. A successful visualization technique should be rapid, sensitive, and inexpensive, while needing minimal sample preparation or user expertise. Current approaches typically require fluorescent labeling or the use of an electron microscope, which ...
متن کاملPolymer dual ring resonators for label-free optical biosensing using microfluidics.
We demonstrate a polymer resonator microfluidic biosensor that overcomes the complex manufacturing procedures required to fabricate traditional devices. In this new format, we show that a gapless light coupling photonic configuration, fabricated in SU8 polymer, can achieve high sensitivity, label-free chemical sensing in solution and high sensitivity biological sensing, at visible wavelengths.
متن کاملBiosensing platform combining label-free and labelled analysis using Bloch surface waves
Bloch surface waves (BSW) propagating at the boundary of truncated photonic crystals (1D-PC) have emerged as an attractive approach for label-free sensing in plasmon-like sensor configurations. Due to the very low losses in such dielectric thin film stacks, BSW feature very low angular resonance widths compared to the surface plasmon resonance (SPR) case. Besides label-free operation, the large...
متن کاملLocalized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches
Localized surface plasmon resonance (LSPR) has emerged as a leader among label-free biosensing techniques in that it offers sensitive, robust, and facile detection. Traditional LSPR-based biosensing utilizes the sensitivity of the plasmon frequency to changes in local index of refraction at the nanoparticle surface. Although surface plasmon resonance technologies are now widely used to measure ...
متن کاملLabel-free Biosensing Using Cascaded Silicon-on-insulator Micro-racetrack Resonators Integrated with Pdms Microfluidic Channels
This paper demonstrates a label-free biosensing platform using Silicon-On-Insulator (SOI) micro-racetrack resonators, cascaded such that multiple measurements can be made using a single input and output waveguide and therefore a single detector. The devices are integrated with poly(dimethylsiloxane) microfluidic channels in order to characterize the devices’ sensing properties. Both bulk refrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 9 10 شماره
صفحات -
تاریخ انتشار 2017